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Corner Function Analysis of Microstrip
Transmission Lines

T. K. SESHADIU, MEMBER, IEEE, S. IvIAHAPATRA, AND K. RAJAIAH

Abstruct-A new method of anafysis of mfcrostrip transmfssioIsfhteR
~~ comer fIUIdOnS (eigenfunctions) fs presented. Assuming the mM

mode propagation for the shielded microdrfp fine strueturq srdutiorw are

set up in a series of comer frmetions, wbkh isolatestbe singularity at the
edgeof the strip. The boundaryeonrfitioasare satisfiedby using a method
of sueeeasive integration of boundary errors. Nomerieaf results are ob-

tained for tlse charge distribution from which the mkrostrtp ~me charaeter-

iatic impedance is deterndned. Excellent agreement with pubfished theo-

retical results and ex@rnentaf data is obtained. The nomericaf reardts

clearly bring out the power of the method.

I. INTRODUCTION

T HERE has been a considerable amount of interest

since 1965 by several authors in the analysis of micro-

strip transmission lines. A large number of semianalytical

and numerical methods have been applied for the solution

of microstrip line problem. The principal techniques used

are modified confonnal mapping [1], finite-difference

method [2], and the variational method [3], [4]. The analy-

sis of microstrip line problem has posed difficulties due to

the presence of singularities arising from the inhomogene-

ity in the structure and the discontinuity between the

conductor and the dielectric surface (Fig. 1). The general

treatment of microstrip transmission lines has been

attempted by many workers [5]–[10] of which [5], [6], [10]

deal with the singularities. Some of the recent investiga-

tions of harmonic boundary value problem in solid

mechanics using “corner functions” provide an attractive

method for analyzing problems with singularities [11 ],

[12]. The “corner function” technique has recently been

applied successfully for the solution of strip transmission

line problem [13], [14]. In the present work, a similar

approach is followed and an exact formulation to the

solution of harmonic mixed boundary value problems in

the presence of singularities is presented using the direct

method of analysis employing corner functions. The solu-

tion is then specialized to tackle the microstrip transmis-

sion line problem.
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Fig. 1. Microstrip line in a shielded box.

II. CORNER FUNCTION ANALYSIS

Consider a two field problem in the form of an arbi-

trary sector with the regions R 1 and R2 as shown in Fig.

2. The chosen coordinate system has its origin at the apex

O. In each region, the boundary conditions on the edges

Ozt and OC and the interface conditions on OB are all

homogeneous.

In the present field problem, the two regions are

governed by the Laplace’s equation,

v=@i = o, i=l,2 (1)

where i denotes the number of regions. Solutions are set

up for each region separately in a series of ‘corner func-

tions’ located at O, which identically satisfy the homoge-

neous boundary conditions along the

and the interface conditions on OB.
For a typical problem, boundary

edges and interface conditions will be

0, =0, on OA

@2=0, on OC

and

@l = @2 1

edges OA and ~C

conditions on the

(2)

(3)

(4)

(5)

where c1 and c= are the relative dielectric constants of the

medium. Then the solutions can be written down in polar

trigonometric form as

@,= r@l(&, el) (6)
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Fig. 2. Arbitrary sector having two dielectrics.
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and

@,= rw2(&, e2) (7)

respectively, for regions R 1 and R 2, where F 1 and F2 are

trigonometric functions. Because of the continuity across

the interface, the sequence of eigenvalues ~ is identical in

both regions R 1 and R 2, The linear homogeneous equa-

tions arising from all the radial boundaries (edges and

interfaces) yield a characteristic equation for the de-

termination of & &’s in general are complex constants.

In a field problem governed by the Laplace’s equation,

the potential @ is always a positive quantity. Hence all

(ReAJ’s are positive. If any of the (Re&)’s is less than

unity (O< Re ~ < 1), correspondingly a singularity in

@l/i3r of the order r “L- 1arises. When an (Re &J equals

unity, the homogeneous boundary and interface condi-

tions may yield a finite &D/i3r; however, in such cases, a

logarithmic singularity may arise. If the lowest value of

(ReAJ is above unity, no singularity is possible at the

comer.

III. ANALYSIS OF MICROSTRIP LINES

Fig. 1 shows the simple geometry of an inhomogeneous

microstrip line shielded in a box. W is the width of the

strip conductor on the dielectric substrate of thickness H,
WI is the distance of the side wall from the edge of the

strip, HI is the distance of the top ground plane from the

strip and q and C2are the dielectric constants of the two

media. In the analysis of the above microstrip line prob-

lem, Laplace’s equation (1) is considered as the governing

equation for both the regions. Quasi-TEM propagation is

assumed and the characteristic parameters are evaluated

by considering the strip to be of infinitesimally small

thickness.

As discussed above, the solutions for the Laplace’s

equation are set up in a series of corner functions a?

and

where Am, Bm, Cm, and Dm are arbitrary constants and

~’s are the eigenvalues to be determined from the homo-

geneous part of the boundary conditions on the strip
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Fig. 3. Half-section of the microstrip line-scheme for the analysis.

conductor OA (Fig. 3), viz.,

W,=.=%lf?, =m=o (10)

and the interface conditions OD between the two dielec-

trics

a+l@,=2m=@2102=o (11)

and

(12)

The potential of the strip conductor K which is excluded

in (10) will be added to the functions after evaluation of

the eigenvalues &.

The eigenvalues ~’s are now determined from the

following characteristic equations obtained by applying

(10)-(12) in (8) and (9) accordingly.

cos~%’=o, ~=; ,:,; ,... (13)

and

sin&77=0, &=l,2,3,,.. (14)

and the satisfaction of the interface conditions leads to

Cm=– Am (15)

and

Dm=~Bm. (16)

Substituting (13) to (16) into (8) and (9) and introducing

the potential K of the strip conductor in the solution, the

final solution is obtained as

*,=K+ ~ Amr”12ms~
m=l,3,5,. . .

+ ~ Bmr”j2sin~ (17)
m=2,4,6,. . .
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and

@,= K- ~ &rmi2COS~
m=l,3 ,5,...

Equations (17) and (18) contain the arbitrary constants

Am and Bm which are to be determined by satisfying the

boundary conditions in the respective regions. Due to

symmetry about the center line BF, only one half of the

whole region is to be considered, A ~, the first term in the

series corresponds to the singular term of the solution. In

this analysis A, will give the strength of the singularity on

the edge of the strip.

IV. BOUNDARY CONDITIONS

By the consideration of the microstrip line symmetry

(Fig. 3), boundary conditions for each region are given
below.

Region RI

M
$= Oon AF,

@l =0 on EF,

@l=O on DE,

Region R2

@2=0 on CD,

IIIz= Oon BC,

a02
—= Oon AB,ax

w
x=——,

2
-H, <y<o (19)

y=– H1, –; <X<wl (20)

x = WI, –Hl<y<(), (21)

X=wl, ()<y<~ (22)

y=~,, _; <X< W, (23)

wx=_—
2’

O<y<H. (24)

V. NUMERICAL EVALUATION OF THE CONSTANTS

The boundary conditions can be satisfied by any one of

the well-known techniques available in literature [15].

Here a new method of satisfying the boundary conditions,

viz., a method of successive integration of boundary errcm

has been utilized for the evaluation of the unknown con-

stants. In this method, the error R on each of the

boundary is successively integrated and equated to zero,

viz.,

(25)

where SI and S2 are the limits of integration and s is the

coordinate along the edge. Each integration applied on

each boundary will be able to provide one equation in the

system of simultaneous equations in terms of the arbitrary

constants Am’s and Bm‘s. By increasing the number of

integration in a systematic manner, the arbitrary constants

are determined for different orders of approximation (in-

volving different number of equations) and a convergence

study is made. It can be shown that (25) can be reduced to

a single integral by the following identity:

= +f2(s2-s)’[R=j(s)]d (26)
s]

where k=0,1,2,. . . denotes the number of integrations.

Thus it is seen that the method is equivalent to an ortho-

gonality method in which the error function is made

orthogonal to a simple polynomial series.

It may be noted that as distinct from a least square

error method of satisfying the boundary conditions, the

present successive integration method ensures self-

equilibration of boundary errors. Due to this advantage

rapid convergence of the solution is achieved.

The above method is used for the satisfaction of the

boundary conditions on all the boundaries in both the

regions. The method is now illustrated for the boundary

BC (y= H) in the region (7r/2 – al) < 19z< (7/2+ aJ,

where al =tan–] W1/H and a2=tan-1 ( W/2)/H as de-

picted in Fig. 3. With this information, the boundary error

equation can be obtained from (18)

m02
‘21Y=H = K– ~_ ~~5 . . . 4AHcosec%)m’2cosY

->>>

+ ~=,~,, ~BJHcosecOJm/2sin~ =0. (27)

Applying the identity (26) the error equation becomes

[
. K– ~ Am(Hcosec0,)m12 cos~

m=l,3,5, -..

+ ~_2~6 ~ Bm(Hcosec02)m’2sin 1~ (222=O. (28)
-,, ,.. .

Above (28) is numerically integrated by the use of

Gauss–Laguerre quadrature polynomials which reduces

the limit from – ~ to + ~ and form one of the sets of the

simultaneous equations. Similar sets of equations are gen-

erated by the above method for each of the boundaries,

The simultaneous equations are then solved by a suitable

method and the arbitrary constants determined.

VI, DETERMINATION OF THE MICROSTRIP LINE

IMPEDANCE

The characteristic impedance of the microstrip line is

evaluated in the following way using the constants de-

termined from the corner function series. The charge-

distribution on the strip has been calculated at a number

of points all along the strip by computing the line in-

tegrals of the electric field normal to the boundary. The

characteristic impedance has been determined from the

knowledge of the charge-distribution. In order to evaluate

the microstrip line characteristic impedance Z, for TEM

mode approximation, free space capacitance Co is first

evaluated for the homogeneous air medium and then
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Fig. 4. Characteristic impedaneeof themicrostrip fine.

capacitance Cd in the presence of inhomogeneously filled

dielectric as

‘=.& (29)

where C=2.997925 X108 m/s, velocity of light in free

space.

VII. RESULTS AND DISCUSSIONS

Numerical results are obtained for microstrip line struc-

ture with dielectric constants of homogeneous air medium

and c1= 1.0 and 62=9.8 for various values of W/H ratio.

The boundaries BC and EF are suitably divided and each

division treated separately for purposes of integration so

that enough weightage is given to regions close to the strip

conductor. Results are obtained for the three orders of

approximation with k = O, 1, and 2 involving matrix orders

of 10, 20, and 30. Convergence studies show that the

convergence is rapid for all the cases and the trend is

monotonic for small values of W/H and is slightly oscil-

latory for large values of W/H. In all cases, comparison

with earlier results [1] show that the 20 term values (in

many cases even 10 term values) are highly accurate, the

difference between the two being less than 1 percent. The

errors on the boundary are also studied and found to be

less than .0.001 percent in the ground plane regions close

to the strip.

The characteristic impedance of the microstrip line is

presented in Fig. 4 as a function of W/H ratio for the

dielectric constant 9.8 of the substrate. Wheeler’s results

by conformal mappling method is also shown for com-

parison purpose. Fig. 4 shows excellent agreement be-

tween the present result with those of Wheeler’s.

Experimental results of the characteristic impedance

have been obtained for various values of W/H ratios on

Alsimag 772 (dielectric constant = 9.8) substrates.

Measurements have been carried out using TDR

(Tektronix 7S12) and the results are shown in Fig. 4 which

shows close agreement.
The charge-distribution on the strip at y = O for the

homogeneous air medium with W/H = 1.0, WI= 3.0, and

HI= 3.5 is estimated from the theoretical analysis and

120 r
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Fig. 5. Charge distribution on the strip conductor (TV/H= 1.0, WI=

3.0, H, =3.5).

shown in Fig. 5. As expected, the charge-distribution

indicates singularity at the edge of the strip. Fig. 5 also

shows the charge-distribution of the rnicrostrip line with

c1= 1.0 and 62= 10.0, the other parameters remaining the

same as above. This plot clearly shows the increase in

total charge of the microstrip line structure with the

insertion of the dielectric layer, however, the nature of

singularity and the edge conditions remain unchanged.

Main features of the above analysis are summarized as

follows:

1) By the method adopted here, it is possible to identify

the nature of the singularity and isolate the singularity.
2) By the use of the successive integration method of

satisfying the boundary conditions, apart from making the

error on the boundary to a minimum the error is also

made to be self-equilibrating. Rapid convergence is ob-

tained with only a few terms of the series (first order

solution involving a 10 X 10 matrix). Convergence is

monotonic for small values of W/H while it becomes

slightly oscillatory for large W/H values.
3) By considering large values of HI and/or Wl, cases

of no top wall and/or no side wall can be analyzed

without difficulty.

4) No need for the inversion process as involved in the

earlier studies [6].

5) Accurate results are obtained with little effort with

the inclusion of the singularities.

6) The computational time taken by this approach (of

the order of <15 s in DEC-system 10) is very little.

VIII. CONCLUSION

A rigorous method for the analysis of microstrip trans-
mission lines using corner function has been presented.

Successive integration method has been applied for the

satisfaction of the boundary conditions which gives ac-

curate results with only a few terms of the series. Results

are presented for the microstrip line characteristic imped-
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ante for various values of W/H ratio, with c1= 1.0 and [5]

.s2= 9.8 and compared with the available theoretical results

and the measured experimental values, which shows very [6]
close agreement. The same method can be applied to

solve many other problems like suspended microstrip line

and slot line.
[7]

ACKNOWLEDGMENT [8]

The authors are thankful to Dr. S. N. S. Rajasekaran,

Dr. K. P. Zacharia and Prof. R. V. S. Sitaram and Shri
[9]

B. K. Sarkar of TIFR for the help rendered by them.
[10]

[1]

[2]

[3]

[4]

REFEIU3NCEs

H. A. Wheeler, “Transmission line properties of parallel strips [11]
separated by a dielectric sheet,” IEEE Trans. Microwaoe TheoT
Tech,, vol. MTT-13, pp. 172-185, Mar. 1965. [12]

H. E. Stinehelfer Sr., “An accurate calculation of uniform micro-
strip transmission linesfl IEEE Trans. Microwave Theoty Tech.,
vol. kfTT-16, pp. 439-444, July 1968. [13]

E. Yamashlta and R. Mittra, “Variationrd method for the analysis
of microstrip lines: IEEE Trans. Microwaue Theoty Tech., vol.
MTT-16, pp. 251-256, Apr. 1968. [14]

E. Yamashita, “Variational method for the analysis of microstrip-

tike transmission lines: IEEE Trans. Microwave Theory Tech., vol. [15]

M’IT-16, pp. 529–535, Aug. 1968.

T. G. Bryant and J. A. Weiss, “Parameters of microstnp transmis-

sion lines and coupled pairs of rnicrostrip lines,” IEEE Trans.
Microwaoe TheoU Tech., vol. MTT’-16, pp. 1021-1027, Dec. 1968.

R. Mittra and T. Itoh, “Charge and potentird distributiona in
shielded striplinesu IEEE Trans. Microwaoe Theo~ Tech., vol.
MTT-18, pp. 149–156, Mar. 1970.
J. W. Duncan, “The accuracy of finite dtiference solutions of
Laplace equation; IEEE Trans. Microwaoc Theoiy Tech, vol.
MTT-15, pp. 575–582, Oct. 1967.
P. Silvester, “TEM wave properties of microstrip transmission
line: Proc. Inst. Elec. Eng., vol. 115, no. 1, pp. 43-43, Jan. 1968.
A. Farrar and A. T. Adams, “A potential theory method for
covered rnicrostrip~’ IEEE Trans. Microwave Theoty Tech., vol.

MTT-21, pp. 494-496, Jtiy 1973.

P. Silvester and P. Benedek, “Electrostatics of the microstrip—

revisited: IEEE Trans. Microwave Theory and Tech,, vol. M’IT-20,
pp. 756-758, Nov. 1972.

A. K. Rae, “Stress concentrations and singularities at interface
comers< Z. Argew. Math. Mech., vol. 51, pp. 395-406, 1971.

K. Rajaiah and S. A. Hussainy, “Isolation of singularities in a
mixed boundary value problem; J. Aero. Sot. India, vol. 25, pp.
171-175, 1973.
T. K. Seshadri, S. Mahapatra, and K. Rajaiah, “Application of

comer function approach to strip line problems,” Znt. J. Elecwon.
(UK), vol. 44, pp. 525-528, May 1978.

“Least square collection as applied to the analysis of strip
trans’fission lines: Proc. IEEE, vol. 67, pp. 314-315, Feb. 1979.

L. Collatz, The Numerical Treatment of Differential Equationr.

Berlin, Germany: Springer-Verlag, 1968.


