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Corner Function Analysis of Microstrip
Transmission Lines

T. K. SESHADRI, MEMBER, IEEE, S. MAHAPATRA, AND K. RAJAIAH

Abstract—A new method of analysis of microstrip transmission lines
using corner functions (eigenfunctions) is presented. Assuming the TEM
mode propagation for the shieided microstrip line structure, solutions are
set up in a series of corner functions, which isolates the singularity at the
edge of the strip. The boundary conditions are satisfied by using a method
of successive integration of boundary errors. Numerical results are ob-
tained for the charge distribution from which the microstrip line character-
istic impedance is determined. Excellent agreement with published theo-
retical results and experimental data is obtained. The numerical results
clearly bring out the power of the method.

I. INTRODUCTION

HERE has been a considerable amount of interest

since 1965 by several authors in the analysis of micro-
strip transmission lines. A large number of semianalytical
and numerical methods have been applied for the solution
of microstrip line problem. The principal techniques used
are modified conformal mapping [1], finite-difference
method [2], and the variational method [3],{4]. The analy-
sis of microstrip line problem has posed difficulties due to
the presence of singularities arising from the inhomogene-
ity in the structure and the discontinuity between the
conductor and the dielectric surface (Fig. 1). The general
treatment of microstrip transmission lines has been
attempted by many workers [5]-[10] of which [5], [6], [10]
deal with the singularities. Some of the recent investiga-
tions of harmonic boundary value problem in solid
mechanics using “corner functions” provide an attractive
method for analyzing problems with singularities [11],
[12]. The “corner function™ technique has recently been
applied successfully for the solution of strip transmission
line problem [13], [14]. In the present work, a similar
approach is followed and an exact formulation to the
solution of harmonic mixed boundary value problems in
the presence of singularities is presented using the direct
method of analysis employing corner functions. The solu-
tion is then specialized to tackle the microstrip transmis-
sion line problem.
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Fig. 1. Microstrip line in a shielded box.

II. CorRNER FUNCTION ANALYSIS

Consider a two field problem in the form of an arbi-
trary sector with the regions R1 and R2 as shown in Fig.
2. The chosen coordinate system has its origin at the apex
0. In each region, the boundary conditions on the edges
04 and OC and the interface conditions on OB are all
homogeneous.

In the present field problem, the two regions are
governed by the Laplace’s equation,

V2,=0, i=1,2 (1)

where i denotes the number of regions. Solutions are set
up for each region separately in a series of ‘corner func-
tions’ located at O, which identically satisfy the homoge-
neous boundary conditions along the edges O4 and OC
and the interface conditions on OB.

For a typical problem, boundary conditions on the
edges and interface conditions will be

® =0, onO4 (2)
®,=0, onOC 3
and
®, = @, )
P P, - on OB
o T % ®

where ¢, and ¢, are the relative dielectric constants of the
medium. Then the solutions can be written down in polar
trigonometric form as

O, =rF1(A,.0,) (6)
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Fig. 2. Arbitrary sector having two dielectrics.

and
Q,=r AmF 2(A,,,8,) (7

respectively, for regions R1 and R2, where F1 and F2 are
trigonometric functions. Because of the continuity across
the interface, the sequence of eigenvalues A,, is identical in
both regions R1 and R2. The linear homogeneous equa-
tions arising from all the radial boundaries (edges and
interfaces) yield a characteristic equation for the de-
termination of A,,. A,’s in general are complex constants.
In a field problem governed by the Laplace’s equation,
the potential ® is always a positive quantity. Hence all
(Re],,)’s are positive. If any of the (ReA,)’s is less than
unity (O0<ReA,<1), correspondingly a singularity in
3®/dr of the order rR¢»~! arises. When an (Re),,) equals
unity, the homogeneous boundary and interface condi-
tions may yield a finite 3®/9dr; however, in such cases, a
logarithmic singularity may arise. If the lowest value of
(Re),) is above unity, no singularity is possible at the
corner.

I

Fig. 1 shows the simple geometry of an inhomogeneous
microstrip line shielded in a box. W is the width of the
strip conductor on the dielectric substrate of thickness H,
W, is the distance of the side wall from the edge of the
strip, H, is the distance of the top ground plane from the
strip and €, and €, are the dielectric constants of the two
media. In the analysis of the above microstrip line prob-
lem, Laplace’s equation (1) is considered as the governing
equation for both the regions. Quasi-TEM propagation is
assumed and the characteristic parameters are evaluated
by considering the strip to be of infinitesmally small
thickness.

As discussed above, the solutions for the Laplace’s
equation are set up in a series of corner functions as

®,=> A4, yMcosA,8,+ > B, y™sinA,,0,
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(®)
and

®,=3 C,y™cos\,0,+ X D, y™sinA 0, 9
where 4,,, B,, C,, and D, are arbitrary constants and
A,.’s are the eigenvalues to be determined from the homo-
geneous part of the boundary conditions on the strip
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Fig. 3. Half-section of the microstrip line-scheme for the analysis.

conductor 04 (Fig. 3), viz.,
‘I’1|0,=w =q)2|92=1r =0

(10)

and the interface conditions OD between the two dielec-
trics

‘I’1|o,=2w=‘p2|02=o (11)
and
dd, 0o,
€ —— =€,——— 12
YO o2« 2 O |o,-0 (12)

The potential of the strip conductor K which is excluded
in (10) will be added to the functions after evaluation of
the eigenvalues A,

The eigenvalues A,’s are now determined from the
following characteristic equations obtained by applying
(10)—(12) in (8) and (9) accordingly.

cosA,,m=0, A,=31233... (13)
and
sinh,7=0, A,=123,--" (14)
and the satisfaction of the interface conditions leads to
C,=—4, (15)
and
D, = :—: B, (16)

Substituting (13) to (16) into (8) and (9) and introducing
the potential K of the strip conductor in the solution, the
final solution is obtained as

0
b, =K+ > Amr'”/lcosm 1
m=1,3,5,--- 2
, . mby
+ > B sin—— (17)
m=2,4,6,-- 2
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and

mb,
A, r"?cos—=

®2=}(* :2 2

m=135,--

+ ——-B r” sin—m—oz. (18)
m=2,46--- €2 2
Equations (17) and (18) contain the arbitrary constants

4,, and B, which are to be determined by satisfying the
boundary conditions in the respective regions. Due to
symmetry about the center line BF, only one half of the
whole region is to be considered. 4,, the first term in the
series corresponds to the singular term of the solution. In
this analysis 4, will give the strength of the singularity on
the edge of the strip.

IV. BounNDARY CONDITIONS

By the consideration of the microstrip line symmetry
(Fig. 3), boundary conditions for each region are given
below.

Region RI
@,
—a——=00nAF x=—p7V, —-H,<y<0 (19)
w
® =0on EF, y=-—H, ——2—<x<Wl (20)
®,=00n DE, x=W, —H,<y<0. (21)
Region R2
=0onCD, x=W, O<y<H (22)
®,=0onBC, y=H, ——;/K<x<Wl (23)
w
T =0 on AB, x=-=, O<y<H. (24)

V. NUMERICAL EVALUATION OF THE CONSTANTS

The boundary conditions can be satisfied by any one of
the well-known techniques available in literature [15].
Here a new method of satisfying the boundary conditions,
viz., 2 method of successive integration of boundary errcrs
has been utilized for the evaluation of the unknown con-
stants. In this method, the error R on each of the
boundary is successively integrated and equated to zero,
viz.,

stds"ds- cds=0 @5)

83 5
ff...
$; v 5

where s, and s, are the limits of integration and s is the
coordinate along the edge. Each integration applied on
each boundary will be able to provide one equation in the
system of simultaneous equations in terms of the arbitrary
constants 4,’s and B,’s. By increasing the number of
integration in a systematic manner, the arbitrary constants
are determined for different orders of approximation (in-
volving different number of equations) and a convergence
study is made. It can be shown that (25) can be reduced to
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a single integral by the following identity:

IR

R=f(s)](ds)**"!

_ Hfssz(sz_s)k[R=f(S)]dg (26)

where k=0,1,2,--- denotes the number of integrations.
Thus it is seen that the method is equivalent to an ortho-
gonality method in which the error function is made
orthogonal to a simple polynomial series.

It may be noted that as distinct from a least square
error method of satisfying the boundary conditions, the
present successive integration method ensures self-
equilibration of boundary errors. Due to this advantage
rapid convergence of the solution is achieved.

The above method is used for the satisfaction of the
boundary conditions on all the boundaries in both the
regions. The method is now illustrated for the boundary
BC (y=H) in the region (7/2—a))<0,<(7/2+a,),
where a;=tan™'W,/H and a,=tan"'(W/2)/H as de-
picted in Fig. 3. With this information, the boundary error
equation can be obtained from (18)

m
Dy ,.p=K— 3 A, (Hcosecd))™ *cos
m=1,3,5,. -

+ 3

m=2,4,6,--

ml
?— B,,(H cosec8,)™ *sin —2—2 =0. (27)
2

Applying the identity (26) the error equation becomes
1 (W/2+az)( 7 k

heare -+ az - 02)

k! '/(‘71'/2_ az) 2

m
K= Y A,(Hcosech,)™*cos—>
m=1,35,- -

+ X Sip (H cosect,)™ si
m=2,4,6,... €2

}da =0. (28)

Above (28) is numerically integrated by the use of
Gauss-Laguerre quadrature polynomials which reduces
the limit from —1 to +1 and form one of the sets of the
simultaneous equations. Similar sets of equations are gen-
erated by the above method for each of the boundaries.
The simultaneous equations are then solved by a suitable
method and the arbitrary constants determined.

VI. DETERMINATION OF THE MICROSTRIP LINE
IMPEDANCE

The characteristic impedance of the microstrip line is
evaluated in the following way using the constants de-
termined from the corner function series. The charge-
distribution on the strip has been calculated at a number
of points all along the strip by computing the line in-
tegrals of the electric field normal to the boundary. The
characteristic impedance has been determined from the
knowledge of the charge-distribution. In order to evaluate
the microstrip line characteristic impedance Z, for TEM
mode approximation, free space capacitance C, is first
evaluated for the homogeneous air medium and then
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Fig. 4. Characteristic impedance of the microstrip line.

capacitance C;, in the presence of inhomogeneously filled
dielectric as

1
cVC,C,

where ¢=2.997925x% 108 m/s, velocity of light in free
space.

zZ= (29)

VII.

Numerical results are obtained for microstrip line struc-
ture with dielectric constants of homogeneous air medium
and ¢;=1.0 and ¢,=9.8 for various values of W/ H ratio.
The boundaries BC and EF are suitably divided and each
division treated separately for purposes of integration so
that enough weightage is given to regions close to the strip
conductor. Results are obtained for the three orders of
approximation with k=0, 1, and 2 involving matrix orders
of 10, 20, and 30. Convergence studies show that the
convergence is rapid for all the cases and the trend is
monotonic for small values of W/H and is slightly oscil-
latory for large values of W/ H. In all cases, comparison
with earlier results [1] show that the 20 term values (in
many cases even 10 term values) are highly accurate, the
difference between the two being less than 1 percent. The
errors on the boundary are also studied and found to be
less than 0.001 percent in the ground plane regions close
to the strip.

The characteristic impedance of the microstrip line is
presented in Fig. 4 as a function of W/ H ratio for the
dielectric constant 9.8 of the substrate. Wheeler’s results
by conformal mappling method is also shown for com-
parison purpose. Fig. 4 shlows excelient agreement be-
tween the present result with those of Wheeler’s.

Experimental results of the characteristic impedance
have been obtained for various values of W/ H ratios on
Alsimag 772 (dielectric constant = 9.8) substrates.
Measurements have been cartied out using TDR
(Tektronix 7812) and the results are shown in Fig. 4 which
shows close agreement.

The charge-distribution on the strip at y=0 for the
homogeneous air medium with W/ H=1.0, W,=3.0, and
H,=3.5 is estimated from the theoretical analysis and

RESULTS AND Discussions
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Fig. 5. Charge distribution on the strip conductor (W/H=1.0, W,=
3.0, H;=3.5).

shown in Fig. 5. As expected, the charge-distribution
indicates singularity at the edge of the strip. Fig. 5 also
shows the charge-distribution of the microstrip line with
€;=1.0 and ¢,=10.0, the other parameters remaining the
same as above. This plot clearly shows the increase in
total charge of the microstrip line structure with the
insertion of the dielectric layer, however, the nature of
singularity and the edge conditions remain unchanged.

Main features of the above analysis are summarized as
follows:

1) By the method adopted here, it is possible to identify
the nature of the singularity and isolate the singularity.

2) By the use of the successive integration method of
satisfying the boundary conditions, apart from making the
error on the boundary to a minimum the error is also
made to be self-equilibrating. Rapid convergence is ob-
tained with only a few terms of the series (first order
solution involving a 10X 10 matrix). Convergence is
monotonic for small values of W/H while it becomes
slightly oscillatory for large W/ H values.

3) By considering large values of H, and/or W, cases
of no top wall and/or no side wall can be analyzed
without difficulty.

4) No need for the inversion process as involved in the
earlier studies [6].

5) Accurate results are obtained with little effort with
the inclusion of the singularities.

6) The computational time taken by this approach (of
the order of <15 s in DEC-system 10) is very little.

VIII.

A rigorous method for the analysis of microstrip trans-
mission lines using corner function has been presented.
Successive integration method has been applied for the
satisfaction of the boundary conditions which gives ac-
curate results with only a few terms of the series. Results
are presented for the microstrip line characteristic imped-

CONCLUSION
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ance for various values of W/ H ratio, with ¢,=1.0 and
€,=9.8 and compared with the available theoretical results
and the measured experimental values, which shows very
close agreement. The same method can be applied to
solve many other problems like suspended microstrip line
and slot line.
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